

Wet Weather Flows, Membrane Bioreactors, and Blending – Protecting and Improving Water Quality

NACWA Summer Conference Hilton Head, S.C. July 20, 2005

Overview

Brightwater: a case study for blending

Artist's rendering of the Brightwater Treatment Plant, scheduled for completion in 2010

Existing System

420 square mile service area 2 regional treatment plants 2 wet weather treatment plants Small treatment plant in Vashon 330 miles of conveyance pipe 42 pump stations 19 regulator stations 200 mgd of sewage treated 72 dry tons/day of biosolids Operating budget: \$80 Million Capital budget: \$160 Million

Brightwater Treatment System

2010 - 36 mgd plant (AWWF) peaks at 140 mgd 2040 - 54mgd plant (AWWF) peaks at 170 mgd 13 mile conveyance pipeline, 40-450 feet deep 5200 ft. outfall, 600 feet deep System cost is \$1.48 billion (in 2004 \$)

King County has both combined and separated systems

- West Point takes large volumes from combined areas
- Blending recognized as viable method for addressing CSOs; permit allows blending above 300 mgd with peak capacity at 440 mgd
- South plant (separated areas) permit authorizes blending, though events are rare
- Brightwater will serve an entirely separated system

Decision process for Brightwater

- Extensive technical and environmental review
 - Application of criteria that met technical requirements and community values
 - Innovative design to meet regulatory challenges and be cost-effective
- Involvement of regulators, jurisdictions, and tribal governments
 - Presented to decision makers and public

Treatment plant uses Membrane Bioreactor, or MBR

- Split flow treatment for peak flows
- Configured to cost-effectively exceed secondary treatment requirements
- Produces reclaimed water (Class A) without additional filtration for base flows
- Less pollution (BOD, TSS, metals, organics, pathogens)

Average flows treated at Brightwater - 2010-2030

- **Daily 31.3 mgd**
- **Annually 11.5 billion gallons**
- Annual portion expected to be blended 200 to 400 million gallons

MBR Benefits

- Smaller footprint
- Fewer odors
- Produces a fully nitrified effluent reduces oxygen demand on Puget Sound
- Reduce chemicals for disinfection
- Substantially improved effluent quality
- Reclaimed water produced for nearly same cost as conventional secondary treatment

MBR Design

Will provide full MBR treatment for all but 2% of flow at 38 mgd (average wet weather flow) MBR design capacity
Blending of flows is expected to occur 35 times in an average year at MBR design capacity

Comparison of the Annual Discharge of BOD and TSS for Conventional Activated Sludge and MBR Split Stream Treatment Alternatives for Brightwater Treatment Plant at 38 MGD

Membrane biosactor

MBR Costs

Capital:

Annual O&M:

MBR

\$400M

\$ 9.9M

Conventional

\$402M

\$8.8M

40 million

+10 50 million

MBR - no blending

\$1 billion

\$20M

100 million

120

300 million 13

Other Effluent Quality Parameters

Parameter	MBR	CAS
Ammonia-N	< 1mg/L	10 mg/L (non-nitrifying)
Turbidity	< 0.5 NTU	10 to 15 NTU*

^{*}Greater variability in effluent turbidity due to storms, biology, etc.

Also, greater removal rates for metals and organics that are associated with particulates (no readily available data)

Conclusions

- Blending with MBRs improves overall environmental protection
- Met regional goals by adding value without significant added costs
- Positioned the treatment plant process to meet future regulatory requirements
- Can provide reclaimed water at lower cost
- State and Region 10 have been supportive of the concept
- Treatment Plant Facilities Plan approved by state Department of Ecology in June 2005; discharge permit requirements (NPDES) still being negotiated

Questions

Don Theiler, Division Director
King County Department of Natural Resources and
Parks, Wastewater Treatment Division

don.theiler@metrokc.gov

